AP Calculus BC

Chapter 6 Test 1 Review - FTC FRQ

1. (1999 BC5) The graph of the function f, consisting of three line segments, is given. Let $g(x) = \int_1^x f(t)dt$.

- b. Find the instantaneous rate of change of g, with respect to x, at x = 1.
- c. Find the average rate of change of g over the interval [-2, 4].
- d. Find the average value of g' over the interval [1, 2].
- e. Find the minimum value of g on the closed interval [-2, 4]. Justify your answer.
- f. The second derivative of g is not defined at x = 1 and x = 2. How many of these values are xcoordinates of points of inflection of the graph of g? Justify your answer.
- g. Find the equation of the tangent line to g at x = 2.

Chapter 6 Test 1 Review - FTC FRQ

- 2. (2002 BC4) The graph of the function f shown consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t) dt$.
 - a. Find g(-1), g'(-1), and g''(-1).

- b. For what values of x in the open interval (-2, 2) is g increasing? Explain your reasoning.
- c. For what values of x in the open interval (-2, 2) is the graph of g concave down? Explain your reasoning.
- d. Sketch a graph of g on the closed interval [-2, 2].

- e. Find the average value of g' on [0, 1].
- f. Find the instantaneous rate of change of g' at x = 1.
- g. Find the equation of the tangent line to g' at x = -1.

AP Calculus BC

Chapter 6 Test 1 Review - FTC FRQ

- 1. (1999 BC5) The graph of the function f, consisting of three line segments, is given. Let $g(x) = \int_{1}^{x} f(t) dt$
 - a. Compute g(4) and g(-2).

b. Find the instantaneous rate of change of g, with respect to x, at x = 1.

c. Find the average rate of change of g over the interval [-2, 4].

$$\frac{g(4)-g(-2)}{4-(-2)} = \frac{5/2+6}{6} = \frac{5+12}{12} = \frac{17/12}{12}$$

d. Find the average value of g' over the interval [1, 2].

$$\frac{1}{2-1} \int_{1}^{2} g'(x) dx = g(x) \Big]_{1}^{2} = (g(2) - g(1)) = \boxed{5/2}$$

$$g(2) = 5/2$$

e. Find the minimum value of g on the closed interval [-2, 4]. Justify your answer.

$$g' = f = 0$$
 At $x = 3$ $g(-2) = -6$ min value is -6.]
$$g(3) = 3$$

$$g(4) = 72$$

f. The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

g. Find the equation of the tangent line to g at x = 2

AP Calculus BC

Chapter 6 Test 1 Review - FTC FRQ

2. (2002 BC4) The graph of the function f shown consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t)dt$.

b. For what values of x in the open interval (-2, 2) is g increasing? Explain your reasoning.

c. For what values of x in the open interval (-2, 2) is the graph of g concave down? Explain your reasoning.

d. Sketch a graph of g on the closed interval [-2, 2].

e. Find the average value of g' on [0, 1].

$$\frac{1}{1-0} \int_{0}^{1} g'(x) dx = g(x) \Big|_{0}^{1} = g(1) - g(0) = \frac{3}{2} - 0 = \frac{3}{2}$$

f. Find the instantaneous rate of change of g' at x = 1.

g. Find the equation of the tangent line to g' at x = -1.

$$g'(+) = f(+) = 0$$

$$g''(+) = f'(-1) = 3$$

$$[y-0 = 3(x+1)]$$