1. (1999 BC5) The graph of the function f, consisting of three line segments, is given. Let $g(x)=\int_{1}^{x} f(t) d t$.
a. Compute $g(4)$ and $g(-2)$.
b. Find the instantaneous rate of change of g, with respect to x, at $x=1$.

c. Find the average rate of change of g over the interval $[-2,4]$.
d. Find the average value of g^{\prime} over the interval $[1,2]$.
e. Find the minimum value of g on the closed interval $[-2,4]$. Justify your answer.
f. The second derivative of g is not defined at $x=1$ and $x=2$. How many of these values are $x-$ coordinates of points of inflection of the graph of g ? Justify your answer.
g. Find the equation of the tangent line to g at $x=2$.
2. (2002 BC4) The graph of the function f shown consists of two line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
a. Find $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$.
b. For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.

c. For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.
d. Sketch a graph of g on the closed interval $[-2,2]$.
e. Find the average value of g^{\prime} on $[0,1]$.
f. Find the instantaneous rate of change of g^{\prime} at $x=1$.
g. Find the equation of the tangent line to g^{\prime} at $x=-1$.

AP Calculus BC

Chapter 6 Test 1 Review - FTC FRQ

1. (1999 BC5) The graph of the function f, consisting of three line segments, is given. Let $g(x)=\int_{1}^{x} f(t) d t$.
a. Compute $g(4)$ and $g(-2)$.

$$
\begin{aligned}
& g(4)=\int_{1}^{4} f(t) d t=5 / 2 \\
& g(-2)=S_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t=-6
\end{aligned}
$$

b. Find the instantaneous rate of change of g, with respect to x, at $x=1$.

$$
\begin{aligned}
& g^{\prime}(x)=f(x) \\
& g^{\prime}(1)=f(1)=4
\end{aligned}
$$

c. Find the average rate of change of g over the interval $[-2,4]$.

$$
\frac{g(4)-g(-2)}{4-(-2)}=\frac{5 / 2+6}{6}=\frac{5+12}{12}=17 / 12
$$

d. Find the average value of g^{\prime} over the interval $[1,2]$.

$$
\begin{aligned}
& \left.\frac{1}{2-1} \int_{1}^{2} g^{\prime}(x) d x=g(x)\right]_{1}^{2}=(g(2)-g(1))=5 / 2 \\
& g(2)=5 / 2
\end{aligned}
$$

e. Find the minimum value of g on the closed interval $[-2,4]$. Justify your answer.

$$
\begin{array}{ll}
g^{\prime}=f=0 \text { AT } x=3 \quad & g(-2)=-6 \quad \text { MIN VALNLE } 15-6 . \\
& g(3)=3 \\
g(4)=5 / 2
\end{array}
$$

f. The second derivative of g is not defined at $x=1$ and $x=2$. How many of these values are $x-$ coordinates of points of inflection of the graph of g ? Justify your answer.
$g^{\prime \prime}=f^{\prime}$ ChANEES SIGAS AT $x=1$ BUT NOT ATT $x=2 \Rightarrow g$ HAS POIVT of INFEZTION AT $x=1$ ONLY.
g. Find the equation of the tangent line to g at $x=2$.

$$
\begin{array}{ll}
g(2)=5 / 2 \\
g^{\prime}(2)=f(2)=1
\end{array} \quad y-5 / 2=1(x-2)
$$

AP Calculus BC

Chapter 6 Test 1 Review - FTC FRQ

2. (2002 BC4) The graph of the function f shown consists of two line segments. Let g be the functic given by $g(x)=\int_{0}^{x} f(t) d t$.
a. Find $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$.
$g(-1)=S_{0}^{-1}$ f(t)dt $=-S_{-1}^{0}$ f(t)dt: $=-3 / 2 \quad g^{\prime \prime}(-1)=f^{\prime}(-1)=3$
$g^{\prime}(-1)=f(1)=0$
b. For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.

g incr if $g^{\prime}=f>0$, so g incr. on $[-1,1]$.
c. For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.

$$
g^{\prime \prime}=f^{\prime}<0 \text { on }(0,2) \Rightarrow g \text { canc ane down on }(0,2) .
$$

d. Sketch a graph of g on the closed interval $[-2,2]$.

e. Find the average value of g^{\prime} on $[0,1]$.

$$
\left.\frac{1}{1-0} \int_{0}^{1} g^{\prime}(x) d x=g(x)\right]_{0}^{1}=g(1)-g(0)=\frac{3}{2}-0=\frac{3}{2}
$$

f. Find the instantaneous rate of change of g^{\prime} at $x=1$.

$$
g^{\prime \prime}(1)=f^{\prime}(1)=-3
$$

g. Find the equation of the tangent line to g^{\prime} at $x=-1$.

$$
\begin{aligned}
& g^{\prime}(-1)=f(-1)=0 \\
& g^{\prime \prime}(-1)=f^{\prime}(-1)=3
\end{aligned}
$$

